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ABSTRACT 
 
     This paper aims to establish data-driven models for the prediction of advance rate 
(AR) of earth pressure balance-tunnel boring machine (EPB-TBM) in weathered rocks. 
Specifically, for this purpose, linear regression (LR), support vector regression (SVR), 
and random forest (RF) machine learning algorithms have been employed, and their 
efficacy in predicting EPB-TBM AR has been evaluated. For this, a representative dataset 
of a metro project tunnel passing through weathered rock was analyzed. In particular, for 
this, initially the geological data in the nearfield of the tunnel was statistically interpolated 
using the Kriging technique, which enabled objective sub-surface profiling. Following this, 
rock mass rating (RMR), compressive strength of intact rock (UCS), face pressure, main 
drive speed, main drive torque, advance thrust force, cutterhead contact force, average 
chamber pressure, screw conveyor torque, polymer flow rate and foam flow rates were 
used as input features in the linear regression (LR), support vector regression (SVR) and 
random forest (RF) machine learning (ML) models. Specifically, a 90:10 ratio of train-test 
split was used for training and testing of the models for the cumulative 1201 datasets. 
The analysis showed that LR, SVR, and RF are able to predict the AR of the EPB-TBM 
with a coefficient of determination (R²) of 80%, 89%, and 88%, respectively. Polymer flow 
rate, main drive torque, and foam flow rate have been found to be significant parameters 
of first degree of importance, followed by face pressure, average chamber pressure, 
advance thrust force, and cutterhead contact force. From the geology of the intact rock, 
the RMR of the rock mass is found to be a better parameter than the UCS of the intact 
rock. A partial dependence plot of the individual parameter has been plotted; the advance 
thrust force has an unchangeable influence on advancement rates, while main drive 
speed and main drive torque are found to be inversely and directly related to the 
advancement rate, respectively. Bound optimization has been performed to obtain the 
optimum set of input values that will maximize the output, i.e., advance rate (AR). RMR, 
UCS of the intact rock and face pressure have been kept as static bound, while average 
earth pressure, main drive torque, screw conveyor torque and cutterhead contact force 
have been kept as relative bound, and main drive speed, advance thrust force, polymer 
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flow rate, and foam flow rate have been kept as absolute bound. A representative value 
of static bound has been kept to perform the constrained inverse modelling. 
 
 
 
 
 

1. INTRODUCTION 
 

     EPBM has been widely used in the urban environment, specifically for metro tunneling. 
EPBM balances the earth pressure by employing face pressure, utilizing excavated 
material and additives at the soil face, and creates a balanced environment for the mining 
operation. The earth pressure balancing often presents several challenges, making it 
difficult for the study purpose. The understanding of the advancement rate of EPBM 
depends upon various geological, mechanical, and external factors. TBM performance 
prediction modelling in the beginning is prominently done by theoretical models, which 
are useful in explaining the nature of physical forces acting in excavation, but do not 
serve the purpose of performance prediction well. Later, scholars used empirical models 
to explain the performance prediction, which also have significant insufficiencies. 
Recently, with the advancement of computing tools and the availability of enormous TBM 
recorded sensor data, it has become fascinating to use ML algorithms on actual cutting 
behavior of the TBM to model its performance prediction. Although several scholars have 
used different ML algorithms to model the EPB-TBM advancement behavior, however, 
there is no established model for the prediction of the EPB-TBM advancement rates as 
of now. Nonetheless, sufficient work has been done on the hard rock TBM, and 
characterization of its advancement rates has been quite well understood. 
     Comparison of various hard rock TBM models as summarized in Table 1, presents a 
comparative summary of five research studies that focus on predicting the rate of 
penetration (ROP) of Tunnel Boring Machines (TBMs) in hard rock conditions using 
various machine learning and optimization techniques. These studies, conducted 
between 2004 and 2014, highlight the evolution of modeling strategies, tools used, 
datasets, and performance metrics for improving TBM efficiency. 
     The key focus of each study is to model and predict how quickly a TBM can progress 
through rock based on various input parameters. To achieve this, each study employs 
different artificial intelligence or machine learning techniques. One of the earliest studies 
by (Benardos, 2004) uses a simple Neural Network, while subsequent research like 
(Yagiz, June 2009), (Mokhtari S, 2020)and (Armaghani, 2017) employ Artificial Neural 
Networks (ANN) and advanced hybrid methods involving Imperialist Competitive 
Algorithm (ICA) and Particle Swarm Optimization (PSO). (Mahdevari, 2014) takes a 
different approach by using Support Vector Regression (SVR), and (Yagiz S, 2011) uses 
PSO as a standalone optimization tool. The studies (Yagiz, June 2009) have been 
conducted on different tunnel sites across the world. A critical component of these models 
is the selection of input parameters—the geological and operational variables used to 
train and test the models. These inputs range from rock and geological properties such 
as Rock Quality Designation (RQD), Uniaxial Compressive Strength (UCS), Brazilian 
Tensile Strength (BTS), Brittleness Index (BI), and Quartz Content, to structural factors 
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like the angle between weak planes and tunneling direction. Operational variables such 
as thrust force, cutterhead torque, revolution per minute (RPM), and specific energy 
consumption are also included in more advanced models. This diverse set of parameters 
allows the models to capture the complex interactions between geology and machine 
performance. 
      Model accuracy is expressed using either percentage error or the coefficient of 
determination (R²). Higher R² values indicate better model performance. (Benardos, 2004) 
reported a modest 8% error, while later models showed significant improvements. For 
example, (Yagiz, June 2009) achieved R² > 80, (Armaghani, 2017) achieved R² > 95, 
and (Mahdevari, 2014) reported R² = 94.9%, indicating a strong predictive performance 
of their SVR model. 
 
 
Table 1. Comparison of various hard rock TBM models. 

 
Hard rock TBM rate of penetration performance model 

Models (Benardos, 
2004) 

(Yagiz, June 
2009) 

(Armaghani, 
2017) 

(Mahdevari, 
2014) 

(Yagiz S, 
2011) 

Type of 
machine 

Hard Rock 
TBM 

Hard Rock 
TBM 

Hard rock 
TBM 

Hard Rock 
TBM 

Hard Rock 
TBM 

Tools 
used 

Neural 
Network 

Artificial 
Neural 

Network 

ANN, ICA & 
PSO, and a 

Hybrid of 
them 

Support 
Vector 

Regression 

Particle 
Swarm 

Optimization 

Project 
Site 

Athens Queen's 
Water 

Tunnel, New 
York 

Water 
tunnel, 

Pahang, 
Malayasia 

Queen's 
Water 

Tunnel, New 
York 

Queens 
Water 

Tunnel No. 
3, New York 

Input 
Paramet

ers 

Degree of 
weathering
, Overload 

Factor, 
RMR, 
RQD, 
UCS, 

Tunnel 
Overburde
n, Ground 

Water 
Table, 
Rock 

Permeabilit
y, TBM 

Operations 

UCS, BTS, 
BI, Distance, 
DPW, Angle 

alpha 
between 

weak plane 
and tunneling 

direction 

UCS, BTS, 
RQD, RMR, 
Weathered 

Zone, 
Quartz 

content, 
Thrust force 
per Cutter, 

RPM 

UCS, BTS, 
BI, Distance, 
DPW, Angle 

alpha 
between 

weak plane 
and tunneling 

direction, 
Thrust force, 
Cutterhead 
power and 

torque, 
Specific 
Energy 

UCS, BTS, 
BI, DPW, 

Alpha, 
Measured 

ROP 

% COD R2> 92 R2> 80 R2> 95 R2> 94.9 R2> 73 
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     The "EPBM Rate of Penetration Performance Model,” as summarized in Table 2, 
provides a comparative overview of four studies focusing on modeling the Rate of 
Penetration (ROP) for earth pressure balance tunnel boring machine (EPB-TBM). The 
objective across all the studies is to predict the ROP based on various mechanical and 
operational parameters using machine learning and statistical techniques. Each study 
differs in terms of modeling tools, project locations, and selected input variables. 
In the first study in Table 2 (Mokhtari S, 2020), employed Support Vector Regression 
(SVR) to model the ROP using data from the Northgate Link Tunnel in Seattle. The model 
achieved a high predictive performance with an R² value greater than 88. Input 
parameters included a comprehensive list of machine dynamics and environmental 
conditions, such as screw conveyor torque (1 and 2), cutterhead torque, net thrust, foam 
flow rates, tail shield annular pressure, and clearances around the tail shield (left, right, 
top, and bottom). The inclusion of parameters like front body rolling and stroke difference 
left-to-right indicates an attempt to capture nuanced mechanical behavior during 
excavation. 
     The subsequent model by (Mokhtari S., 2020) used the same tunnel project site but 
shifted to a more interpretable modeling technique, elastic net regression, which blends 
both Lasso and Ridge regression properties. While the R² score dropped slightly to 
greater than 75, the choice of model emphasizes interpretability and feature selection 
efficiency. Input parameters largely overlap with the previous study but focus more on 
internal machine metrics like cutterhead RPM, depth below ground surface, and depth 
below groundwater table, showing a shift towards variables that reflect more direct control 
over boring conditions. 
 
 
Table 2. Comparison of various EPBM models 
 

EPB-TBM rate of penetration performance model 

Models (Mokhtari S, 2020) (Mokhtari S., 2020) 
(Elbaz K., 

2019) 
(Gao X., 

2019) 
Types EPBM EPBM EPBM EPBM 
Tools 
used 

Support Vector 
Regression Elastic Net ANFIS RNN 

Project 
Site 

Northgate Link 
Tunnel, Seattle 

Northgate Link 
Tunnel, Seattle 

China Metro 
Tunnel Project 

Subway 
Tunnel 

Input 
feature 

Screw-1,2 Torque, 
Cutterhead Torque, 
Net Thrust, Foam 

Flow Rates, Stroke 
Difference, Front 

body rolling, 
Average stroke, TS 
Annular Pressure, 
Left, right, top, and 

bottom tail clearance 

Cutterhead RPM, 
Net thrust, Foam 

flow rates, 
cutterhead torque, 

screw conveyor 
torque1 72, Depth 

below ground 
surface and water 

Cutterhead 
RPM, 

Cutterhead 
Torque, Screw 

Conveyor 
rotation speed 

Cutterhead 
torque, 

thrust force, 
Chamber 
pressure 
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% COD R2> 88 R2> 75 R2> 85 R2> 73 
 
     In contrast, (Elbaz K., 2019) adopted a soft computing approach using ANFIS 
(Adaptive Neuro-Fuzzy Inference System) to predict ROP during the China Metro Tunnel 
Project. ANFIS is particularly effective for modeling systems with complex, nonlinear 
relationships and uncertain inputs. The model utilized fewer but highly relevant 
parameters such as cutterhead RPM, torque, and screw conveyor rotation speed. 
Despite the smaller input set, the model performed well with an R² value exceeding 85, 
suggesting that ANFIS was able to extract meaningful relationships from the data. 
     (Gao X., 2019) explored a variety of combinations of algorithms in Recurrent Neural 
Network for modeling EPBM performance during a Subway Tunnel project with success 
in R² score of about 73%. The input parameters include cutterhead torque, thrust force, 
and chamber pressure—all critical to EPBM operations in pressurized ground conditions. 
These parameters reflect direct mechanical stressors influencing penetration rates. 
 
     For this study, EPB-TBM data of an underground metro tunnel project of a city in the 
southern part of India have been used. Machine learning algorithms, from simpler to 
complex, have been utilized, such as linear regression, support vector regression, and 
random forest. The flow chart for the data-driven modelling, similar to (Morshedlou A., 
2024) is shown in Figure 1 below. 
 

 
 
Figure 1. Flow chart showing data-driven modelling. (Morshedlou A., 2024) 
 
 
The features used for this study are rock mass rating (RMR), compressive strength of 
intact rock (UCS), face pressure, main drive speed, main drive torque, advance thrust 
force, cutterhead contact force, average chamber pressure, screw conveyor torque, 
polymer flow rate and foam flow rates. Feature matrices are detected for outliers and 
subsequently removed, followed by normalization and train-test splitting of the datasets. 
LR, SVR, and RF models are trained and tested. Hyperparameter tuning has been 
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performed, followed by the selection of significant features. SHAP and permutation 
importance analysis are performed. Bound optimization has been carried out on a sample.  
The paper is organized as follows. Project details and sub-surface profiling have been 
discussed in section 2, followed by EPBM configuration details and data collection and 
cleaning is discussed. Data-driven modelling has been discussed in section 3.  
Parameter selection, training, testing of the model, and regularization have been 
discussed in the same section. The discussion part, as section 4, further provides findings 
of the model.  
 

2. PROJECT BACKGROUND AND SUB-SURFACE PROFILING  
 
     For modelling the EPB-TBM advance rates, geological and machine data from the 
metro tunnel project from a city in the southern part of India have been taken. The tunnel 
alignment stretch for this study is a twin tunnel, of approximately 1.2 km length each. The 
highly weathered section of the tunnel is especially selected for the study. The diameter 
of the tunnel is a standard metro tunnel of 6.6 m and was constructed using two identical 
EPB-TBMs and both tunnels have been completed recently. 
 
 

 
 
Figure 2.  Project tunnel alignment. 
 
 
     The study area has distinct geological features. The upper layer is made of 
transported sandy soil, varying in thickness up to 20 m, underlaid by metamorphic rock 
of various weathering grades. A small shallow river passes through the middle of the 
alignment and makes a significant contribution to local geology. A total 47 numbers of 
geotechnical boreholes were drilled in the nearfield of the tunnel alignment for the soil 
investigation. Various field tests and laboratory tests (on 11 drilled boreholes) have been 
performed on the samples to characterize the geological parameters along the tunnel 
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alignment. The field bore log record and the lab report shared by the project team have 
been digitized. 
     Borehole profile, showing type and extent of various soils such as Sand, Grade V, IV, 
III, II, AND I have been drawn using Surfer software as shown in Figure 3 (a). Grades 
are defined on the basis of Rock Quality Designation (RQD) of the core obtained during 
drilling of the boreholes. RQD value of 0-10 is categorized as grade V, 11-30 as grade 
IV, 31-60 as grade III, 61-80 as grade II, and more than 80 as grade I rocks. The gridding 
method using the Kriging Interpolation technique has been used for the development of 
various sub-surfaces (Lisa, 2016). To explain the methods in simple terms, suppose the 
depths of the sea are known at various points; if someone wants to generate the sea bed, 
it can be generated using Kriging Interpolation. Kriging is a geostatistical interpolation 
method widely used in geology to predict spatially distributed variables based on known 
sample data. It estimates unknown values by weighting surrounding measured points, 
considering both the distance and the degree of variation between them. In geology, 
Kriging is essential for creating accurate maps of mineral deposits, soil properties, 
groundwater levels, and contamination spread. It can be utilised to estimate the 
geological parameters for this study. 
     For Kriging Interpolation, a linear type of semivariogram has been utilized, the slope 
has been kept at, default setup of 0.020, search neighborhood consists of all the points. 
The specific parameters of the Ordinary Kriging can be varied based on the judgment of 
the researcher. The individual subsurfaces thus obtained, as shown in Figure 3(b), have 
been stacked over one another, since sub-surfaces contain spatial values. Later, stacked 
sub-surfaces have been intersected with a vertical plane passing through the tunnel axis, 
and the cross-section thus obtained is the sub-surface profile along the tunnel alignment.  
 
 
 
 
 
 
 
 
 
 
 
 
 Grade III 
 
 
 
 

(a)                                                                               (b) 
 
 
Figure 3. (a) Geotechnical borewell Record along tunnel alignment & 3(b) 3-D 
Subsurface layers along tunnel alignment. 

Ground 
Level 

Sand 
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Grade IV 
Grade III 
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Two different subsurface profiles can be obtained by intersecting with the vertical plane 
passing through either of the tunnel axes. Figure 4, shown below, depicts the sub-surface 
profile thus generated for the downline tunnel.  

Figure 4. Subsurface profile along the downline tunnel alignment. 
 
 
The vertical axes of the sub-surface profile have been enlarged 5 times, to make the 
diagram presentable, since the length of the tunnel is 1.2 km and the depth lies between 
15-25 m. Subsequently, the tunnel longitudinal drawing has been masked over the 
generated sub-surface profile using a tool called ARCGIS, as shown in Figure 5. One 
can clearly see part of the tunnel passing through sandy strata, mixed strata, and within 
the weathered rocky geology. The segment of the tunnel, specifically passing through 
the weathered rocky strata, has been chosen for the modelling, further. Similarly, 
subsurface profile generation and ring association have been performed for the other 
tunnel as well. 
Rings are the structural unit of a tunnel, it facilitate in indexing of the tunnel construction 
and also help for study purposes. Rings associated with weathered rock are categorized 
as shown in Table 2. A total of 1201 rings are selected from weathered rock, 624 from 
the upline tunnel, and 577 from the downline tunnel. 
 
Table 3. The rings association of weathered rock 
 
Tunnel Rings Soil-Type 

Upline TBM 2 From To Weathered Rock 
170 794 624 

Gr II 
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Downline TBM 1 190 620 430 
650 797 147 

    Σ = 1201 Rings 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Upline tunnel alignment vis-à-vis sub-surface profile and its magnified section 
 
  

2.1 EPBM CONFIGURATION AND OPERATION 
     Two single-shield EPB, identical TBMs have been used for tunneling between Station 
A and Station B. TBM 1 and TBM 2 are used for the downline and upline tunnels, 
respectively. The articulation system used in these TBMs is active, allowing precise 
steering and better control during tunneling operations. The TBMs have a shield length 
of 10 meters, providing structural support to the excavated tunnel. 
     The cutting face diameter of the TBM is 6.6 meters, suitable for creating tunnels for 
metro or utility lines. The cutterhead has an opening ratio of 32%, indicating the 
proportion of the cutterhead face that is open for excavated material to fall into the 
excavation chamber. Cutterhead equipped with disc cutters and scrapers, which are 
efficient for cutting through a variety of ground materials. Each machine uses 16 thrust 
jacks arranged in 4 groups, responsible for pushing the machine forward. Jacks can 
cumulatively exert a force of 42.5 MN, ensuring steady and powerful advancement. 
EPBM is powered by eight electric main drives, providing a reliable and efficient driving 
mechanism. The TBMs have a substantial torque capacity of 4239 kN-m, enabling them 
to rotate the cutterhead through resistant ground. The cutterhead can operate at a 
maximum rotational speed of 4.555 rpm, offering a balance between penetration rate and 
torque. It uses a single screw conveyor for muck removal. The conveyor screw is 0.8 

170-794 
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meters in diameter, facilitating effective soil transportation. The machine can discharge 
excavated material at a rate of 6.48 m³/min. The TBM can operate at a maximum 
pressure of 4 bar, suitable for maintaining face stability in varying ground conditions. The 
machine can advance at a rate of 80 mm/min, which reflects its cutting performance 
under optimal conditions.  

 
2.2  DATA COLLECTION, PREPARATION, AND PARAMETER SELECTION 

     As discussed in the above section, the part of the tunnel alignment that lies completely 
within the weathered rock is selected for the analysis. For the upline tunnel, weathered 
rock strata lie between rings 170 to 794, and for the downline tunnel, weathered rock 
condition exists in rings 190 to 620 and 650 to 797. The rest of the segment of the tunnel 
alignment is traversing through mixed geology (a mix of rock and sand) and thus renders 
the analysis very complex, which is not in the scope of this study. 
     Out of 47 geotechnical boreholes drilled along the twin tunnel alignment of 
approximately 1.2 km, 11 boreholes were tested in the laboratory. RMR and UCS (of 
intact rock) are established among other things.  
     Rock mass rating provides a comprehensive evaluation of the weathered rock 
condition. It is the composite score of UCS of the intact rock, Rock Quality Designation, 
Spacing of discontinuities, ground water condition, and orientation of discontinuities. 
RMR rating of 81-100 is designated as very good, 61-80 as good, 41-60 as fair, 21-40 as 
poor, and 0-20 as very poor. The RMR value and the UCS of the rock taken from the 
report are further interpolated using Kriging interpolation techniques of ordinary types, 
having spherical semi-variogram, with search radius 100 m, and the number of nearest 
neighbors is kept at 10. The representative value of both parameters for each ring has 
been extracted using the ArcGIS tool. RMR Values range from 17 to 76, indicating high 
variability in weathered rock condition, inevitable from the fact that the tunnel lies in the 
vicinity of the seashore. UCS value ranges from 27 to 68 MPa. Face pressure values are 
given by a geologist based on overburden, water head, and surcharge. 
     TBM is a complex and advanced machine with numerous inbuilt sensors and 
recorders. It records various operational datapoints every 5 seconds. For the selected 
ring, mean value of advancement rates, main drive rpm, main drive torque, advance 
thrust force, cutterhead contact force, average chamber pressures, foam flow rates, 
polymer flow rates and screw conveyor torque were obtained from the data recorder of 
the machine. The feature matrix has been prepared with advancement (or ring no) as the 
index and comprises of advancement rate as the dependent variable and other input 
features as independent variables. There was a total of 3 features from geology and 7 
machine features.  
     The average chamber pressure wasn’t directly reported. EPB-TBM bulkhead has 3 
pairs of sensors, in this case, which measure the excavation chamber pressure at three 
locations. A linear straight line was passed along the three pressure sensor locations, 
pressure force acting on the circular face as per the vertical linear pressure line was 
integrated and subsequently converted into average chamber pressure. 
     Thus, our dataset comprises a total of 1201 pieces of data. Data is cleaned using an 
outlier removal technique, based on quartile and interquartile range. The upper bound 
and lower bound is defined as (Q1-1.5*IQR) and (Q3-1.5*IQR). Dataset is cleaned 
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against 4 parameters, namely advancement speed (mm/min), advance thrust force (kN), 
average chamber pressure (bar) and main drive speed (rpm). Advancement rates may 
be exceptionally high or low based on local variability of some external and internal 
factors; thus, it needs to be curated. Operator, while driving the EPB-TBM, often tries to 
keep the variation in main drive speed as minimal as possible and fixes it based on their 
previous knowledge and experience. But, often in cautious situations and under other 
circumstances, such as after intervention, the speed may drop, quite less or much more, 
thus it needs to be removed for a fair study. Operators are often used to abuse the 
machine based on the exceptionally high thrust force in cases of low advancement rates, 
and may opt for a lesser than desirable thrust force in case of local damages. Thus, it 
renders data to be filtered based on thrust force as well. Sometimes, due to 
malfunctioning or damage of the earth pressure sensors in the bulkhead, the values of 
earth pressures, thus obtained, are extremely low, which need to be removed from the 
analysis. After outlier removal, we are left with 1045 datapoints. ML learning algorithm 
for testing and training is performed on these cleaned datasets.  
     Before splitting the dataset between train and test. The entire dataset has been 
partitioned into 4 parts on the basis of the magnitude of advancement rates, namely low, 
medium-low, medium-high, and high. This practice is called stratified functional 
partitioning (SFP), which ensures the uniform splitting of the dataset from the entire range 
of advancement rate values, thus reducing the chances of biases and variances. After 
SFP, the category of dataset has been split into train and test data in a ratio of 90:10 and 
later coalesced together to form composite train and test samples comprising almost 
uniform values of advancement rates from each category of low, medium-low, medium-
high, and high. Further, before training independent variables are standardized using a 
scaling function as scaled_x_train and scaled_x_test to bring uniformity among the 
various different dimensional parameters. However dependent variable y has not been 
scaled. 
 
 

3. DATA-DRIVEN MODELLING 

 

     There are numerous machine learning regression algorithms that can be used for 
modelling the advanced rates of EBP-TBM. Among all, three distinct regression 
algorithms have been employed, namely linear regression (LR), support vector 
regression (SVR), and the random forest (RF) algorithm, which were found to perform 
satisfactorily on the error parameters. All coding and modelling functions were performed 
in a Jupyter notebook in Python. The model and codes can be accessed at the GitHub 
link https://github.com/Amanchs-ui/TBM_TUNNELING. 
     Linear regression is the simplest and often provides adequate accuracy, and its 
simpler structure provides an interpretable description of the relationship between EPBM 
parameter and AR. 
The hypothesis function of the linear regression model is depicted as Equation 1. 
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h (x) = Ø0x0 + Ø1x1 + Ø2x2 + Ø3x3 + Ø4x4 + Ø5x5 + Ø6x6 + Ø7x7………………                       (1) 
 
     where x1, x2, x3 …. are feature vectors and Ø1, Ø2, Ø3 ……… are known as the 
coefficient of the features, Ø0 is specifically known as intercepts. Algorithm tries to 
optimize the hypothesis function based on the learning from the training data. The bigger 
the value of coefficient of the features, the more important it will be. Test-train split ratio 
for this algorithm has been kept at 10:90. 
 
 
Table 4. Values of various coefficients of Linear Regression Model 
 
Feature Coefficient Values 
Intercept Ø0 10.92 
Advance thrust force [kN] Ø1 -0.56 
Main drive total contact force [kN] Ø2 -0.51 
Main drive speed [rpm] Ø3 -0.16 
Main drive torque [MNm] Ø4 1.50 
Face Pressure[bar] Ø5 0.53 
EEP Middle Sensor [Bar] Ø6 -1.11 
EEP Bottom Sensors [Bar] Ø7 -0.06 
Screw conveyor torque [kNm] Ø8 -0.09 
Foam Polymer Flow Rate [l/min] Ø9 1.67 
Foam Flow Rate [l/min] Ø10 1.35 
RMR [No] Ø11 -0.19 
UCS [Mpa] Ø12 0.39 

 
 
     The coefficient of determination (R²) for the above model was found to be 0.80, while 
root mean squared error (RMSE) were found to be 1.95. 
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Figure 6. Comparison between observed vs predicted advanced rate in linear regression 
model on test data 
One of the disadvantages of the linear regression model is that it only depicts linear 
relationships between independent and dependent variables.  
     As one can observe visually in the above plot, the predicted line is very sensitive, and 
it’s a classic case of overfitting. For fine-tuning, the overfitting LASSO and Ridge 
regularization have been utilized. 
     LASSO (Least Absolute Shrinkage and Selection Operator) is a regularization 
technique used in linear regression that adds a penalty equal to the absolute value of the 
magnitude of coefficients (L1 norm). This method helps to prevent overfitting by shrinking 
less important feature coefficients to zero, effectively performing variable selection. As a 
result, LASSO is useful when dealing with datasets that have many features, allowing 
the model to become simpler and more interpretable. It is especially effective when only 
a subset of input features is expected to have a strong influence on the target variable.  
LASSO with cross validation (10 subsets) has been performed to find the best alpha, 
which comes out to be 0.0033, and test MSE and COD come as 3.36 and 0.83, not much 
improvement from the original model. 
     Support Vector Regression (SVR) is a powerful machine learning technique used for 
time series forecasting. Based on the principles of Support Vector Machines (SVM), SVR 
aims to find a function that approximates future values within an acceptable error margin. 
It is especially useful for capturing complex, non-linear relationships in time series data. 
In SVR, data is often first scaled, and time series features are engineered (like lagged 
values) to convert the sequential data into a supervised learning problem. The RBF 
(Radial Basis Function) kernel is commonly used to model nonlinear trends and patterns. 
SVR is robust to noise and overfitting, making it effective for small to medium-sized 
datasets. 
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Figure 7. Comparison between observed vs predicted advanced rate in the SVR model 
on test data 
 
The train test split ratio used for the SVR algorithm is 10:90. As mentioned above, radial 
basis function kernel was employed. The trend obtained from predicted vs observed 
value of advancement rates on the test sample data is as follows. 
     The coefficient of determination (R²) for the SVR model is found to be 91, and the root 
mean squared error (RMSE) is found to be 1.35. The SVR model also seemed to be 
overfitting. To generalize, the overfitting hyperparameter tuning has been done. 
GridsearchCV with coefficient of determination as a scoring metric has been performed 
to find the best set of ‘C’, gamma, and epsilon, which comes as 50, 0.01, and 0.1, 
respectively. However, hyperparameter tuning didn’t lead to any improvement in the 
coefficient of determination.  
Random Forest Regression is an ensemble learning method that can be effectively 
applied to time series forecasting. It builds multiple decision trees and averages their 
predictions to improve accuracy and control overfitting. In time series tasks, Random 
Forest is typically used by creating lagged features from past observations to predict 
future values. 
This method is capable of capturing complex non-linear relationships and handling 
missing values or noisy data, making it suitable for real-world time series like sales 
forecasting, stock market analysis, and energy consumption prediction. Random Forest 
is robust and less sensitive to hyperparameter tuning compared to other models. 
However, it does not inherently account for time dependencies or seasonality, so proper 
feature engineering (e.g., creating lag, rolling statistics, or time-based features) is crucial. 
Despite this, its ability to model non-linear patterns and interactions makes it a powerful 
and flexible tool for time series forecasting. 
The test train split used for the random forest algorithm is 90:10. The trend between 
predicted vs observed values of the advancement rates is as follows. 
The coefficient of determination (COD) for the RF model is found to be 0.90 and root 
mean squared error (RMSE) was found to be 1.44 respectively. 
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Figure 8. Comparison between observed vs predicted advanced rate in RF model on 
test data. 
The RF model was further tried to be improved with the help of GridsearchCV to find the 
best hyperparameter for the model. The best parameterization gives maximum depth of 
the model, maximum sample leaf, and minimum sample split and n-estimator as ‘none’, 
1, 2, and 200, respectively. However, the hyperparameter fixing didn’t improve the 
coefficient of determination significantly. 
     A summary table of the stratified functional partitioning, train-test-split, coefficient of 
determination score, and root mean square values of linear regression, support vector 
regression, and random forest has been depicted below. 
 
 
Table 5. Summary of error parameters of various models 
 
Model Name k-fold CV T/T/S R2 Score RMSE 
Linear Regression 4 0.1 0.80 1.95 
Random Forest 4 0.1 0.88 1.56 
Support Vector Regression 4 0.1 0.89 1.47 

 
4. DISCUSSION 

 

However, the general performance prediction behavior of linear regression, support 
vector regression, and random forest has been discussed in the above chapter. The 
nuances and specifics of every algorithm have been discussed further in this chapter. 

• As shown in Figure 9 below, predicted vs observed values of the advance rates 
across three algorithms, linear regression, support vector regression, and random 
forest regression. Visually, it can be observed that there is an underestimation of 
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prediction at the higher values of advance rates (mm/min) across all the algorithms, 
or it is biased at higher values of advance rates. Although these biases are less in 
the case of support vector regression and random forest than in linear regression. 
However, hyperparameter tuning have been done for all the algorithms, but 
fraction of biases still persists. 
 

 
Figure 9. Scatter plot (a) linear regression (b) support vector regression (c) 
random forest. 
 
 

• There were two plots used to figure out the importance of the parameter in 
modelling advanced rates. Shapely additive explanations, i.e., SHAP analysis, 
give the marginal contributions of the individual parameter in determining advance 
rates (mm/min). Permutation feature importance is another parameter used in 
analyzing significant parameters. It reshuffles the individual parameter and checks 
its influence on the dependent parameters. SHAP and LASSO feature coefficients 
have been plotted for linear regression as shown in Figure 10. Subsequently, 
permutation feature importance has been plotted for the support vector regression 
model and the random forest model. 
 

 
Figure 10. Showing SHAP and LASSO feature coefficients of linear regression 
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Figure 11. Permutation feature importance (a) Support vector regression (b) random 
forest 
 
 

From the above feature importance plots, it can be inferred that polymer flow rate 
(l/min), main drive torque (MNm), and foam flow rate (l/min) are the features of 
first-degree importance. While face pressure, average chamber pressure, 
advance thrust force, and cutterhead contact force are the features of second-
degree importance. 

• As discussed above, the limitation of all the models to underestimate the value of 
the advance rate (mm/min) at higher values. A residual plot, as shown in Figure 
12, for the worst 20 performing cases has been investigated, and the dataset has 
been manually observed to see if there were any recognizable patterns associated 
with underestimation. However, no such pattern could be found; biases at higher 
values of advance rates (mm/min) were due to obscure slump or surge in some 
particular value of parameters. 
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Table 6. Showing True, Predicted, and Residual Values  
 

 
 
Figure 12. Residuals plot Predicted vs Actual in 
SVR (Top20) 
 
                                                                                 

 
• The independent variables can be further 

categorized as purely independent variable, 
controllable variable and indirectly controllable 
variable. Purely independent variable such as 
RMR value, UCS value of the intact rock and face 
pressure (bar), are the naturally existing features, 
it cannot be manipulated in tunnel construction in 
general. Controllable variable such as main drive 
speed (rpm), advance thrust force (kN), foam 
polymer flow rate (l/min) and foam flow rates 
(l/min) are controllable variable, since operator 
have significant control and command over that. 
Indirectly controllable variable such as main drive torque (MNm) and screw 
conveyor torque (kNm) are automatic turbo generated, machine tries to adjust 
automatically the torque in a way to match the cutterhead speed with thrust. 
Average chamber pressure is a result of various parameter, controlled indirectly. 

 
          Table 7. Feature variable categorization and respective bounds 
 

Purely Independent Variable Controllable Variable Indirectly controllable Variable 
RMR Value Main Drive speed Main Drive torque 
UCS Value Advance Thrust force Average Chamber Pressure 
Face Pressure Polymer Flow Rates Screw Conveyor Torque 

 Foam Flow rates Cutterhead contact force 
Fixed/ Static Bounds Absolute Bounds Relative Bound 

 

Index True Predicted Residual 

759 20.6 4.79 15.81 
801 16.4 3.89 12.51 
953 16.2 6.91 9.29 
425 9.8 17.85 -8.05 
838 21.3 13.48 7.82 
793 18.6 11.36 7.24 
849 15 8.69 6.31 
772 19.3 13.09 6.21 
256 8.4 14.48 -6.08 
643 12 6.09 5.91 
590 11.4 5.74 5.66 
904 20.5 14.85 5.65 
973 19.8 14.16 5.64 
796 19.5 13.88 5.62 
824 23.2 17.71 5.49 
912 14.7 20.04 -5.34 
752 14.9 9.60 5.30 
925 16.6 11.31 5.29 
573 13.5 18.71 -5.21 
898 18.9 13.78 5.12 
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Now, bound optimization has been performed keeping the kind of variable in mind, 
it’s a kind of constrained inverse modelling, which is to find the optimal set of input 
values (features) that will maximize the target output i.e. advance rate (rpm), while 
ensuring that all values stay within acceptable or realistic bound.  
 
 

          Table 8. Features and their respective bounds 
 

Features 
Correlation/ 
Bounded by Nominal Vlaues 

Purely Independent Variable / Fixed Bounds 
RMR (No) Fixed 45  
UCS (Mpa) Fixed  51 
Face Pressure (Bar) Fixed  1.84 
Controllable Variable/ Absolute Bounds 
Main_drive_speed [rpm] 4.555 3.1885 
Advance_thrust_force [kN] 42000 29400 

Foam_Flow_Rate[l/min] As per manuf.  
Reco. 477.4 

Polymer_Flow_Rate[l/min] As per manuf. 
Reco. 1.96 

Indirectly Controllable Variable/ Relative Bounds 

Main_drive_torque [MNm] Average Chamber 
pressure (ACP) 

1.81 + 0.69 * 0.49/0.43 
(ACP-2.03) 

Main_drive_total_contact_forc
e [kN] 

Advance Thrust 
Force (ATF) 

3766+0.44*855/1713*(A
TF- 13092) 

Average_Chamber_Pressure[
Bar] Face Pressure (FP) 

2.03 + 0.40 * 
0.478/0.135* (FP-1.854) 

Screw_conveyor_torque 
[kNm] Foam Flow rate 

(FFR) 

13.443 -
0.28*10.363/128*(FFR-
306.68) 

 
Purely independent variables such as RMR, UCS of the intact rock, and face 
pressure values are fixed or static bonds. Main drive speed (rpm), advance thrust 
force (kN), polymer flow rates (l/min), foam flow rates (l/min) are absolute bounds, 
thus, main drive speed (rpm) and advance thrust force (kN) are limited by machine 
capacity (70% of the TBM capacity) and polymer flow rates(l/min) and foam flow 
rates (l/min) are as per manufacturer recommendation. Indirectly controllable 
variables such as main drive torque (MNm), average chamber pressure (bar), 
screw conveyor torque (kNm), and cutterhead contact force (kN) are indirectly 
controlled variable, and can be limited with functional constrain, derived from 
Pearson correlation coefficient established from the dataset, and roughly 
correlated with the strongly correlated features correspondingly. which has been 
shown here in Table 8. 
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Now, optimization of the support vector regression model and random forest 
model has been carried out, with the values of RMR (No), UCS of intact rock (MPa), 
and face pressure values kept at 45, 51, and 1.84, respectively, for a sample 
example. The following results have been found. 
 
Table 9. Features and their optimum values as per inverse modelling 
 

Feature Name SVR 
Model 

RF 
Model 
Value 

Type 

Face_Pressure[bar] 1.84 1.84 Fixed Input 
RMR [No] 45 45.00 Fixed Input 
UCS [Mpa] 51 51.00 Fixed Input 

Advance_thrust_force [kN] 12387 12638 Optimized Input 
Main_drive_speed [rpm] 1.984 2.02 Optimized Input 

Polymer_Flow_Rate[l/min] 1.96 1.85 Optimized Input 
Foam_Flow_Rate[l/min] 477.4 446.43 Optimized Input 

Avg_Chamber_pressure[bar] 2.01 2.01 Computed Feature 
Main_drive_torque [MNm] 1.7944 1.79 Computed Feature 

Main_drive_contact_force [kN] 3624.9 3680.17 Computed Feature 
Screw_conveyor_torque [kNm] 9.687 10.37 Computed Feature 
Max Predicted Advancement 

Rate [mm/min] 19.25 17.40 Model Output 
         
          
          The average predicted advance rate has been found as 18.32 mm/min. 

• One of the applications of this kind of modeling is to gain actionable insights into 
EPB-TBM operation. A partial dependence plot has been drawn for the features, 
which means that keeping all the input variables fixed at their mean values, what 
will be the behavior of advance rates (mm/min) if we vary a particular feature. 
Main drive speed (mm/min), main drive torque (MNm) and advance thrust (kN) are 
the big three of the TBM operation. Partial dependence plot of the big three are 
plotted in the Figure 13. 
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Figure 13. Partial dependence plot for the (a) advance thrust force (kN) (b) main 
drive speed (rpm) and (c) main drive torque (MNm) 
 
 
The above figure can be explained with points- A, B, C and D. There seemed to 
be negligible influence on the advance rates (mm/min) on increasing the advance 
thrust force as shown with A mark. Optimal range of main drive speed seemed to 
be 1.8 to 2 mm/min as highlighted by B point. Advance rates (mm/min) seems to 
increase modestly linearly with the increase in main drive torque (MNm) as 
depicted by C point and seems to flatten with further increment in main drive 
torque (MNm), indicative of wastages of resources and energy as depicted by D 
point. 
 

5. CONCLUSION 

 

     Recent advancement in the development of ML algorithms gives ample opportunity to 
analyze multidimensional variables such as EPB-TBM advancement by utilizing data-
driven modelling. This paper is work in that direction. Data obtained from a metro project 
in the southern part of India is utilized for modelling EPBM advancement rates in 
weathered rock conditions. Geological as well as machine parameters have been utilized 
explicitly. Efforts have been made to see the prediction behavior of various algorithms, 
since every algorithm learns and predicts differently. Linear regression, support vector 
machine, and random forest have been reported to give a reliable measure of prediction. 
Investigation on the worst 20 errors found no pattern. Furthermore, SHAP analysis and 
permutation feature importance suggests that polymer flow rate (l/min), main drive torque 
(MNm) and foam flow rate (l/min) as primary features, followed by face pressure (bar), 
average chamber pressure (bar), advance thrust force (kN) and main drive contact force 
(kN) as secondary parameters. Bound optimization has been performed, categorizing the 
input features into three categories as fixed bounds, absolute bounds, and relative 
bounds. Univariate Partial dependence plot for the advance thrust force (kN), main drive 
speed (rpm), and main drive torque (MNm) depicted in the study would give the operator 
an actionable insight. Among RMR (No) and UCS (Mpa) of intact rock, RMR (no) is found 
to be better predictive parameter in support vector regression and random forest 
regression. However, further cohesion and internal angle of friction parameter may 
potentially serve as important parameter, which needs to be investigated. 
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